Reflow Oven,Pick and Place Machine,Wave Soldering,Small Benchtop SMT,Stencil Printers,PCB Magazine Loader
Products Category
Contact Us

Name: Beijing Glichn S&T Development Co.,Ltd
Tel: +8610-58494188 +8610-65734544
Fax: +8610-65734544
E-mail: info@smtchn.com
Add: Floor 17th,Building No.6,Area 7th,ChaoXinJiaYuanDongLi,Chaoyang District,Beijing,China
Skype: GLICHN

News

• SMT technology • Package sizes introduction • Reworking defective SMD compon • Assembly components techniques • SMT placement equipment

Partners
DHL UPS EMS fedex paypal VISA GLICHN
News

Assembly components techniques

Author:GLICHN Date:7/19/2011 10:49:31 PM
Assembly components techniques
 
Where components are to be placed, the printed circuit board has flat, usually tin-lead, silver, or gold plated copper pads without holes, called solder pads. Solder paste, a sticky mixture of flux and tiny solder particles, is first applied to all the solder pads with a stainless steel or nickel stencil using a screen printing process. After screen printing, the boards then proceed to the pick-and-place machines, where they are placed on a conveyor belt. The components to be placed on the boards are usually delivered to the production line in either paper/plastic tapes wound on reels or plastic tubes. Some large integrated circuits are delivered in static-free trays. Numerical control pick-and-place machines remove the parts from the tapes, tubes or trays and place them on the PCB.
 
The boards are then conveyed into the reflow soldering oven. They first enter a pre-heat zone, where the temperature of the board and all the components is gradually, uniformly raised. The boards then enter a zone where the temperature is high enough to melt the solder particles in the solder paste, bonding the component leads to the pads on the circuit board. The surface tension of the molten solder helps keep the components in place, and if the solder pad geometries are correctly designed, surface tension automatically aligns the components on their pads. There are a number of techniques for reflowing solder. One is to use infrared lamps; this is called infrared reflow. Another is to use a hot gas convection. Another technology which is becoming popular again is special fluorocarbon liquids with high boiling points which use a method called vapor phase reflow. Due to environmental concerns, this method was falling out of favor until lead-free legislation was introduced which requires tighter controls on soldering. Currently, at the end of 2008, convection soldering is the most popular reflow technology using either standard air or nitrogen gas. Each method has its advantages and disadvantages. With infrared reflow, the board designer must lay the board out so that short components don't fall into the shadows of tall components. Component location is less restricted if the designer knows that vapor phase reflow or convection soldering will be used in production. Following reflow soldering, certain irregular or heat-sensitive components may be installed and soldered by hand, or in large scale automation, by focused infrared beam (FIB) or localized convection equipment.
 
If the circuit board is double sided then this printing, placement, reflow process may be repeated using either solder paste or glue to hold the components in place. If glue is used then the parts must be soldered later using a wave soldering process.
 
After soldering, the boards may be washed to remove flux residues and any stray solder balls that could short out closely spaced component leads. Rosin flux is removed with fluorocarbon solvents, high flash point hydrocarbon solvents, or low flash solvents e.g. limonene (derived from orange peels) which require extra rinsing or drying cycles. Water soluble fluxes are removed with deionized water and detergent, followed by an air blast to quickly remove residual water. However, most electronic assemblies are made using a "No-Clean" process where the flux residues are designed to be left on the circuit board [Benign]. This saves the cost of cleaning, speeds up the whole process, and reduces waste.
 
Finally, the boards are visually inspected for missing or misaligned components and solder bridging. If needed, they are sent to a rework station where a human operator corrects any errors. They are then sent to the testing stations (in-circuit testing and/or functional testing) to verify that they operate correctly.